Journal is indexed in following databases:
- SCOPUS
- Web of Science Core Collection - Journal Citation Reports
- EBSCOhost
- Directory of Open Access Journals
- TRID Database - Transportation Research Board
- Index Copernicus Journals Master List
- BazTech
- Google Scholar
2023 Journal Impact Factor - 0.7
2023 CiteScore - 1.4
ISSN 2083-6473
ISSN 2083-6481 (electronic version)
Editor-in-Chief
Associate Editor
Prof. Tomasz Neumann
Published by
TransNav, Faculty of Navigation
Gdynia Maritime University
3, John Paul II Avenue
81-345 Gdynia, POLAND
e-mail transnav@umg.edu.pl
A New Intelligent Approach in Predictive Maintenance of Separation System
ABSTRACT: Reducing contaminant emissions is an important task of any industry, included the maritime one. In fact, in April 2018, IMO (International Maritime Organization) adopted an Initial Strategy on reduction of Greenhouse gas (GHG) emissions from ships. An essential part responsible for producing these emissions is the diesel engine. For that reason vessels include separation systems for heavy fuel oils. The purpose of this work is to improve the predictive maintenance techniques incorporating new intelligent approaches. An analysis of vibrations of this separation system was made and their characteristics were used in a Genetic Neuro-Fuzzy System in order to design an intelligent maintenance based on condition monitoring. The achieved results show that the proposed method provides an improvement since it indicates if a maintenance operation is necessary before the schedule one or if it could be possible extend the next maintenance service.
KEYWORDS: Fast Fourier Transformation (FFT), Greenhouse Gas (GHG), Marine Fuel Separators, Separation System, Predictive Maintenance, Genetic Neuro-Fuzzy System, Supervised Learning, Genetic Algorithm (GA)
REFERENCES
Baojia, C., Baojia, S., Fafa, C., Hongliang, T., Wenrong, X., Zhang, F., Zhao, C., 2018. Fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing. Measurement.
Cerrada, M., Sánchez, R., Cabrera, D., Zurita, G., Li, C., Cerrada, M., Sánchez, R.V., Cabrera, D., Zurita, G., Li, C., 2015. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal. Sensors 15, 23903–23926. - doi:10.3390/s150923903
Chen, S., Cowan, C.F.N., Grant, P.M., 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Networks 2, 302–309. - doi:10.1109/72.80341
Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L., 2004. Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141, 5–31. - doi:10.1016/S0165-0114(03)00111-8
Gkerekos, C., Lazakis, I., Theotokatos, G., 2017. Ship Machinery condition monitoring using performance data through supervised learning. ISBN Smart Sh. Technol. 9781909024632, 105–111.
Go, H., Kim, J.-S., Lee, D.-H., 2013. Operation and preventive maintenance scheduling for containerships: Mathematical model and solution algorithm. Eur. J. Oper. Res. 229, 626–636. - doi:10.1016/j.ejor.2013.04.005
Gou, X., Bian, C., Zeng, F., Xu, Q., Wang, W., Yang, S., 2018. A Data-Driven Smart Fault Diagnosis Method for Electric Motor, in: 2018 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). IEEE, pp. 250–257. - doi:10.1109/QRS-C.2018.00053
He, J., Yang, S., Gan, C., He, J., Yang, S., Gan, C., 2017. Unsupervised Fault Diagnosis of a Gear Transmission Chain Using a Deep Belief Network. Sensors 17, 1564. - doi:10.3390/s17071564
Jakovlev, S., Andziulis, A., Daranda, A., Voznak, M., Eglynas, T., 2017. Research on ship autonomous steering control for short-sea shipping problems. Transport 32, 198–208. - doi:10.3846/16484142.2017.1286521
Jang, J.-S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 23, 665–685. - doi:10.1109/21.256541
M. Samhouri , A. Al-Ghandoor , S. Alhaj Ali , I. Hinti, W.M. a, 2009. An Intelligent Machine Condition Monitoring System Using Time-Based Analysis: Neuro-Fuzzy Versus Neural Network. Jordan J. Mech. Ind. Eng. 3, 294–305.
Marichal, G.N., Hernández, A., Rojas, J.A., Melón, E., Rodríguez, J.A., Padrón, I., 2016. Sistema Inteligente de apoyo a maniobras de grandes buques en puertos. RIAI - Rev. Iberoam. Autom. e Inform. Ind. - doi:10.1016/j.riai.2016.03.005
Martini, A., Troncossi, M., 2016. Upgrade of an automated line for plastic cap manufacture based on experimental vibration analysis. Case Stud. Mech. Syst. Signal Process. 3, 28–33. - doi:10.1016/j.csmssp.2016.03.002
Muszynska, A., 2005. Rotordynamics, CRC Taylor & Francis Group. New York. - doi:10.1201/9781420027792
Nobre, F.S.M., 1995. Genetic-neuro-fuzzy systems: a promising fusion, in: Proceedings of 1995 IEEE International Conference on Fuzzy Systems. The International Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems and The Second International Fuzzy Engineering Symposium. IEEE, pp. 259–266.
Rajasekaran, S., Pai, G.A.V., 2003. Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and applications.
Simani, S., Fantuzzi, C., Patton, R.J., 2003. Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques. - doi:10.1007/978-1-4471-3829-7
Wang, J., Zhang, L., Duan, L., Gao, R.X., 2017. A new paradigm of cloud-based predictive maintenance for intelligent manufacturing. J. Intell. Manuf. 28, 1125–1137. - doi:10.1007/s10845-015-1066-0
White, G., 2010. Introducción al Análisis de Vibraciones. AZIMA, 16-98.
Citation note:
Marichal Plasencia G.N., Ávila D., Hernández A., Padrón Armas I.: A New Intelligent Approach in Predictive Maintenance of Separation System. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 14, No. 2, doi:10.12716/1001.14.02.15, pp. 385-390, 2020
Authors in other databases:
Graciliano Nicolás Marichal Plasencia:
orcid.org/0000-0002-6490-0556
6602751574
Deivis Ávila:
Ángela Hernández:
Isidro Padrón Armas: